Runtime Optimization

Discover how FluentAI automatically optimizes your code during execution using machine learning and adaptive compilation techniques.

Overview

FluentAI's Runtime Learning Mode represents a breakthrough in automatic program optimization. Unlike traditional static optimizers, our system learns from your program's actual behavior and adapts in real-time.

Key Benefits: Achieve 10x-5000x performance improvements automatically without changing your code!

๐Ÿ”ฅ Hot Function Detection

Automatically identifies frequently executed functions that benefit most from optimization.

๐Ÿงช Strategy Exploration

Tests multiple optimization strategies to find the best combination for your code.

๐Ÿ“Š Performance Metrics

Tracks execution time, instructions, and memory usage to make informed decisions.

๐ŸŽฏ Automatic Selection

Seamlessly switches to the best performing variant without manual intervention.

How It Works

The runtime optimization system operates through a sophisticated multi-phase process:

1. Profiling Phase

The VM continuously monitors function execution patterns:

// The VM tracks:
- Function call counts
- Execution duration
- Argument patterns
- Memory allocation rates
- Cache behavior

2. Hot Function Detection

Functions exceeding the hot threshold (default: 100 calls) become optimization candidates:

// Example: This function becomes "hot" after 100 calls
private function calculate_distance(p1: Point, p2: Point) -> float {
    let dx = p2.x - p1.x;
    let dy = p2.y - p1.y;
    sqrt(dx * dx + dy * dy)
}

3. Strategy Exploration

The system explores different optimization strategies:

Performance Comparison

1x None
2x Basic
3x Standard
5x Aggressive

4. Variant Compilation

Each strategy produces a different bytecode variant:

// Original bytecode
LOAD_LOCAL 0
LOAD_LOCAL 1
SUB
DUP
MUL
...

// Optimized variant (with CSE and strength reduction)
LOAD_LOCAL 0
LOAD_LOCAL 1
SUB_AND_SQUARE  // Fused operation
...

5. Performance Measurement

Comprehensive metrics guide optimization decisions:

ExecutionMetrics {
    duration: 125ยตs โ†’ 23ยตs        // 5.4x faster
    instructions: 847 โ†’ 203       // 76% fewer instructions
    allocations: 12 โ†’ 2          // 83% less memory pressure
    cache_misses: 45 โ†’ 8         // Better cache utilization
}

6. Automatic Selection

The best performing variant is automatically selected for future executions.

Optimization Strategies

FluentAI supports multiple optimization strategies, each targeting different performance aspects:

Strategy Optimizations Best For
None No optimizations (baseline) Debugging, predictable behavior
Basic Constant folding, dead code elimination Quick compilation, simple improvements
Standard + CSE, function inlining, basic loop opts Balanced performance/compilation time
Aggressive All optimizations enabled Maximum performance
Custom Specific optimization combination Fine-tuned performance

Custom Strategy Bitmasks

Create custom strategies by combining specific optimizations:

// Example: Enable only memoization and CSE
let custom_strategy = OptimizationStrategy::Custom(0x1004);
// Bit 2 (0x004): Common Subexpression Elimination
// Bit 12 (0x1000): Memoization

// Common combinations:
const MEMORY_FOCUSED = 0x1404;  // Memoization + Loop Invariant Motion
const COMPUTE_FOCUSED = 0x10C;  // CSE + Inlining + Strength Reduction
const BALANCED = 0x80F;         // Multiple balanced optimizations

Exploration Modes

Control how the learning system explores the optimization space:

Quick Mode

// Tests only 4 predefined strategies
ExplorationMode::Quick
// โœ“ Fast exploration (< 1 second)
// โœ“ Good for simple programs
// โœ— May miss optimal combinations

Smart Mode (Recommended)

// Tests 19 carefully selected combinations
ExplorationMode::Smart
// โœ“ Balanced exploration/exploitation
// โœ“ Covers most common patterns
// โœ“ Usually finds near-optimal solution

Exhaustive Mode

// Tests all 8192 possible combinations
ExplorationMode::Exhaustive
// โœ“ Guaranteed to find optimal combination
// โœ— Very time consuming
// โœ— Usually overkill

Configuration

Fine-tune the learning system for your specific needs:

Basic Configuration

// Enable with default settings
let mut vm = VM::new();
vm.enable_learning_mode(LearningModeConfig::default());

// Default configuration:
// - Hot threshold: 100 calls
// - Smart exploration mode
// - 20% exploration rate
// - RL agent enabled

Advanced Configuration

let config = LearningModeConfig {
    // Lower threshold for faster optimization
    hot_threshold: 50,
    
    // More aggressive exploration
    max_strategies_per_function: 20,
    exploration_rate: 0.3,
    
    // Use exhaustive mode for critical functions
    exploration_mode: ExplorationMode::Exhaustive,
    
    // Save optimizations across runs
    save_learned_data: true,
    model_path: Some("./optimizations.flai"),
    
    // Enable AI-guided exploration
    use_rl_agent: true,
};

vm.enable_learning_mode(config);

Per-Function Configuration

// Force specific functions to use certain strategies
vm.set_function_hint("critical_path", OptimizationHint::Aggressive);
vm.set_function_hint("debug_func", OptimizationHint::None);

// Exclude functions from optimization
vm.exclude_from_optimization(&["logging", "debug_*"]);

Performance Monitoring

Track optimization progress and impact in real-time:

Learning Statistics

// Get current optimization status
let stats = vm.get_learning_stats();

$(f"=== Optimization Report ===").print();
$(f"Functions analyzed: {stats.functions_analyzed}").print();
$(f"Hot functions: {stats.hot_functions}").print();
$(f"Optimized: {stats.functions_explored}").print();
$(f"Total variants: {stats.total_variants}").print();

// Track exploration progress
for (func, tested, total) in stats.exploration_progress {
    let percent = (tested as f32 / total as f32) * 100.0;
    $(f"{func}: {percent}% complete ({tested}/{total})").print();
}

Performance Comparison

// Compare performance before/after optimization
let baseline = vm.get_function_metrics("my_function", OptimizationStrategy::None);
let optimized = vm.get_function_metrics("my_function", OptimizationStrategy::Best);

let speedup = baseline.duration / optimized.duration;
$(f"Performance improvement: {speedup}x faster!").print();
$(f"Instructions reduced: {}%", 
    (1.0 - optimized.instructions / baseline.instructions) * 100.0
).print();

Examples

Example 1: Automatic Memoization

// Expensive recursive function
private function fibonacci(n: int) -> int {
    if (n <= 1) { n }
    else { fibonacci(n-1) + fibonacci(n-2) }
}

// First run: ~5 seconds for fib(40)
let result = fibonacci(40);

// After 100 calls, learning mode detects:
// - Function is pure (no side effects)
// - Recursive with overlapping subproblems
// - Applies automatic memoization

// Subsequent runs: ~0.001 seconds
// 5000x speedup achieved automatically!

Example 2: Loop Fusion

// Original code with multiple passes
private function process_data(data: List) -> float {
    data
        .map(x => x * 2.0)      // Pass 1
        .filter(x => x > 10.0)  // Pass 2
        .map(x => sqrt(x))      // Pass 3
        .sum()                  // Pass 4
}

// After optimization:
// - Detects multiple traversals
// - Fuses operations into single pass
// - Applies SIMD vectorization
// Result: 4x faster with 75% less memory usage

Example 3: Value Specialization

// Function often called with specific values
private function render_shape(type: string, params: RenderParams) {
    match type {
        "circle" => render_circle(params),    // 70% of calls
        "square" => render_square(params),    // 20% of calls
        "triangle" => render_triangle(params), // 8% of calls
        _ => render_generic(params)           // 2% of calls
    }
}

// Learning mode creates specialized versions:
// - render_shape_circle() - optimized for circles
// - render_shape_generic() - handles other cases
// Result: 40% performance improvement

Best Practices

1. Profile with Representative Workloads

// Run typical workloads during learning phase
vm.enable_learning_mode(config);

// Execute representative operations
run_typical_workload();
process_average_dataset();
simulate_user_interactions();

// Save learned optimizations
vm.save_optimizations("production.flai");

2. Monitor Memory Usage

// Set memory limits for variant storage
config.max_variants_memory = 100 * 1024 * 1024; // 100MB
config.variant_cache_policy = CachePolicy::LRU;

// Monitor variant memory usage
let memory_stats = vm.get_variant_memory_stats();
if memory_stats.total_size > threshold {
    vm.evict_cold_variants();
}

3. Use Appropriate Exploration Modes

  • Development: Use Quick mode for rapid iteration
  • Testing: Use Smart mode for balanced optimization
  • Production: Load pre-trained optimizations
  • Benchmarking: Use Exhaustive mode for maximum performance

4. Combine with Static Optimization

// Use static optimization hints where appropriate
#[inline(always)]
private function hot_path() { ... }

#[pure]
private function compute_hash(data: string) -> u64 { ... }

// Let runtime optimization handle the rest
vm.enable_learning_mode(config);

Troubleshooting

Performance Regression

Problem: Performance worse after optimization
// Solution 1: Check for optimization conflicts
vm.validate_optimizations();

// Solution 2: Disable problematic optimizations
config.disabled_optimizations = vec![
    OptimizationPass::FunctionInlining,
];

// Solution 3: Reset and re-learn
vm.reset_optimization_data("function_name");

High Memory Usage

Problem: Too many variants consuming memory
// Limit variants per function
config.max_variants_per_function = 5;

// Enable aggressive eviction
config.variant_eviction_threshold = 0.7;

// Monitor and clean up
vm.cleanup_cold_variants(Duration::from_secs(300));

Slow Exploration

Problem: Learning phase takes too long
// Use parallel exploration
config.parallel_exploration = true;
config.exploration_threads = 4;

// Reduce exploration space
config.exploration_mode = ExplorationMode::Quick;

// Focus on hot paths only
config.hot_threshold = 1000; // Higher threshold
Next Steps: Check out our Runtime Optimization Tutorial for a comprehensive guide, or explore more examples of FluentAI in action!