Runtime Optimization Tutorial

Learn how to leverage FluentAI's automatic runtime optimization to make your code faster without manual tuning

1Understanding Runtime Learning Mode

FluentAI's Runtime Learning Mode observes your program's execution patterns and automatically applies optimizations based on actual runtime behavior. This is different from traditional static optimization which makes decisions at compile time.

// Enable learning mode with --learning flag
// fluentai run myprogram.flc --learning

// Your code automatically benefits from runtime optimization
let process_data = (items) => {
    items
        .filter(item => item.value > threshold)
        .map(item => expensive_transform(item))
        .reduce(0, (sum, item) => sum + item.score)
};

Behind the scenes:

  1. FluentAI profiles function execution (100+ calls trigger optimization)
  2. Identifies hot paths and invariant values
  3. Generates specialized versions of functions
  4. Dynamically switches to optimized versions

2Practical Example: Data Processing Pipeline

Let's walk through a real-world example of processing user analytics data:

// analytics_processor.flc
let process_user_events = (events, user_type) => {
    // This function will be called many times with the same user_type
    events
        .filter(event => {
            // Runtime learning will detect if user_type is always "premium"
            // and optimize this check away
            if (user_type == "premium") {
                event.timestamp > last_week
            } else {
                event.timestamp > last_day
            }
        })
        .map(event => {
            // Complex transformation that benefits from optimization
            {
                "user_id": event.user_id,
                "action": event.action,
                "value": calculate_value(event),
                "category": categorize_event(event)
            }
        })
        .group_by(event => event.category)
        .map_values(events => events.length)
};

// Simulate processing many batches
let run_analytics = () => {
    let total_results = [];
    
    // Process 1000 batches of events
    for i in range(0, 1000) {
        let events = fetch_event_batch(i);
        // After ~100 calls, this will use optimized version
        let results = process_user_events(events, "premium");
        total_results.push(results);
    }
    
    total_results
};
Running with learning mode:
$ fluentai run analytics_processor.flc --learning

Learning mode: Function process_user_events called 100 times
Learning mode: Detected invariant parameter 'user_type' = "premium"
Learning mode: Generating optimized variant...
Learning mode: Switching to optimized version (2.3x faster)

Processing completed in 4.2s (vs 9.7s without optimization)

3Optimization Strategies

FluentAI supports multiple optimization strategies that can be applied automatically:

Strategy When Applied Benefits Example
Constant Folding Invariant parameters detected Eliminates redundant computations filter(x => x > 10) when 10 is always the same
Inline Caching Repeated method calls on same types Faster method dispatch item.calculate() on homogeneous lists
Loop Unrolling Small fixed-size iterations Reduced loop overhead Processing fixed-size vectors
Dead Code Elimination Branches never taken Smaller, faster code if (DEBUG) checks in production

4Writing Optimization-Friendly Code

While learning mode works automatically, you can write code that helps it optimize better:

💡 Tip: Keep hot functions pure and avoid unnecessary side effects. Pure functions are easier to optimize.
// ✅ Good: Pure function, easy to optimize
let calculate_score = (user, activity) => {
    let base_score = activity.points;
    let multiplier = user.level * 0.1 + 1.0;
    base_score * multiplier
};

// ❌ Avoid: Side effects make optimization harder
let calculate_score_with_logging = (user, activity) => {
    $("Calculating score...").print();  // Side effect
    let base_score = activity.points;
    let multiplier = user.level * 0.1 + 1.0;
    database.log_calculation(user.id);  // Another side effect
    base_score * multiplier
};

Best Practices:

5Monitoring and Tuning

FluentAI provides tools to monitor optimization effectiveness:

# Run with detailed optimization stats
fluentai run myprogram.flc --learning --stats

# Save optimization model for reuse
fluentai run myprogram.flc --learning --save-model myapp.flai

# Load previous optimization model
fluentai run myprogram.flc --load-model myapp.flai
Optimization Statistics:
Functions optimized: 12
Average speedup: 2.8x
Memory saved: 15%

Top optimized functions:
1. process_user_events: 3.2x faster (invariant elimination)
2. calculate_score: 2.5x faster (constant folding)
3. filter_items: 2.1x faster (inline caching)

6Advanced Scenarios

Custom Optimization Hints

// Provide hints to the optimizer
let critical_function = (data) => {
    // @optimize: aggressive
    // Tells optimizer to spend more time optimizing this function
    complex_algorithm(data)
};

// Indicate likely values
let process_request = (request_type) => {
    // @likely: request_type == "GET"
    match request_type {
        "GET" => fast_path(),
        "POST" => slower_path(),
        _ => fallback()
    }
};

Profile-Guided Optimization

# Record production workload
fluentai run server.flc --learning --record-profile prod.profile

# Optimize based on production profile
fluentai compile server.flc --optimize-profile prod.profile -o server.opt

# Run optimized version
fluentai run server.opt

Summary

FluentAI's Runtime Learning Mode provides automatic optimization without manual intervention. Key takeaways:

🚀 Performance Note: Most applications see 2-5x performance improvements with learning mode enabled, with zero code changes required!