Runtime Optimization Tutorial
Learn how to leverage FluentAI's automatic runtime optimization to make your code faster without manual tuning
1Understanding Runtime Learning Mode
FluentAI's Runtime Learning Mode observes your program's execution patterns and automatically applies optimizations based on actual runtime behavior. This is different from traditional static optimization which makes decisions at compile time.
// Enable learning mode with --learning flag
// fluentai run myprogram.flc --learning
// Your code automatically benefits from runtime optimization
let process_data = (items) => {
items
.filter(item => item.value > threshold)
.map(item => expensive_transform(item))
.reduce(0, (sum, item) => sum + item.score)
};
Behind the scenes:
- FluentAI profiles function execution (100+ calls trigger optimization)
- Identifies hot paths and invariant values
- Generates specialized versions of functions
- Dynamically switches to optimized versions
2Practical Example: Data Processing Pipeline
Let's walk through a real-world example of processing user analytics data:
// analytics_processor.flc
let process_user_events = (events, user_type) => {
// This function will be called many times with the same user_type
events
.filter(event => {
// Runtime learning will detect if user_type is always "premium"
// and optimize this check away
if (user_type == "premium") {
event.timestamp > last_week
} else {
event.timestamp > last_day
}
})
.map(event => {
// Complex transformation that benefits from optimization
{
"user_id": event.user_id,
"action": event.action,
"value": calculate_value(event),
"category": categorize_event(event)
}
})
.group_by(event => event.category)
.map_values(events => events.length)
};
// Simulate processing many batches
let run_analytics = () => {
let total_results = [];
// Process 1000 batches of events
for i in range(0, 1000) {
let events = fetch_event_batch(i);
// After ~100 calls, this will use optimized version
let results = process_user_events(events, "premium");
total_results.push(results);
}
total_results
};
$ fluentai run analytics_processor.flc --learning
Learning mode: Function process_user_events called 100 times
Learning mode: Detected invariant parameter 'user_type' = "premium"
Learning mode: Generating optimized variant...
Learning mode: Switching to optimized version (2.3x faster)
Processing completed in 4.2s (vs 9.7s without optimization)
3Optimization Strategies
FluentAI supports multiple optimization strategies that can be applied automatically:
| Strategy | When Applied | Benefits | Example |
|---|---|---|---|
| Constant Folding | Invariant parameters detected | Eliminates redundant computations | filter(x => x > 10) when 10 is always the same |
| Inline Caching | Repeated method calls on same types | Faster method dispatch | item.calculate() on homogeneous lists |
| Loop Unrolling | Small fixed-size iterations | Reduced loop overhead | Processing fixed-size vectors |
| Dead Code Elimination | Branches never taken | Smaller, faster code | if (DEBUG) checks in production |
4Writing Optimization-Friendly Code
While learning mode works automatically, you can write code that helps it optimize better:
// ✅ Good: Pure function, easy to optimize
let calculate_score = (user, activity) => {
let base_score = activity.points;
let multiplier = user.level * 0.1 + 1.0;
base_score * multiplier
};
// ❌ Avoid: Side effects make optimization harder
let calculate_score_with_logging = (user, activity) => {
$("Calculating score...").print(); // Side effect
let base_score = activity.points;
let multiplier = user.level * 0.1 + 1.0;
database.log_calculation(user.id); // Another side effect
base_score * multiplier
};
Best Practices:
- Consistent Types: Use consistent types in collections for better inline caching
- Separate Hot and Cold Paths: Keep frequently executed code separate from rarely used code
- Avoid Dynamic Code: Runtime-generated code can't be optimized as effectively
- Use Immutable Data: Immutable structures enable more aggressive optimizations
5Monitoring and Tuning
FluentAI provides tools to monitor optimization effectiveness:
# Run with detailed optimization stats
fluentai run myprogram.flc --learning --stats
# Save optimization model for reuse
fluentai run myprogram.flc --learning --save-model myapp.flai
# Load previous optimization model
fluentai run myprogram.flc --load-model myapp.flai
Functions optimized: 12
Average speedup: 2.8x
Memory saved: 15%
Top optimized functions:
1. process_user_events: 3.2x faster (invariant elimination)
2. calculate_score: 2.5x faster (constant folding)
3. filter_items: 2.1x faster (inline caching)
6Advanced Scenarios
Custom Optimization Hints
// Provide hints to the optimizer
let critical_function = (data) => {
// @optimize: aggressive
// Tells optimizer to spend more time optimizing this function
complex_algorithm(data)
};
// Indicate likely values
let process_request = (request_type) => {
// @likely: request_type == "GET"
match request_type {
"GET" => fast_path(),
"POST" => slower_path(),
_ => fallback()
}
};
Profile-Guided Optimization
# Record production workload
fluentai run server.flc --learning --record-profile prod.profile
# Optimize based on production profile
fluentai compile server.flc --optimize-profile prod.profile -o server.opt
# Run optimized version
fluentai run server.opt
Summary
FluentAI's Runtime Learning Mode provides automatic optimization without manual intervention. Key takeaways:
- Just add
--learningflag to enable automatic optimization - Functions are optimized based on actual runtime behavior
- Write clean, pure functions for best results
- Monitor optimization effectiveness with
--stats - Save and reuse optimization models across runs