Advanced Topics

This guide covers FluentAI's advanced features for building high-performance, concurrent applications.

Concurrency Overview

FluentAI provides multiple concurrency primitives inspired by Go and Erlang, designed for safety and performance.

Concurrency Models

Note: All concurrency primitives in FluentAI are memory-safe and data-race free by design.

Channels

Channels provide thread-safe communication between concurrent tasks.

Creating and Using Channels

// Create a channel with buffer size
let ch = channel(10);

// Unbuffered channel (synchronous)
let sync_ch = channel(0);

// Send values
ch.send(42);
ch.send(100);

// Receive values
let value = ch.receive();  // Blocks until value available
let maybe_value = ch.try_receive();  // Non-blocking, returns Option

Producer-Consumer Pattern

// Producer
spawn {
    for i in range(0, 100) {
        ch.send(i * i);
        perform Time.sleep(10);
    }
    ch.close();  // Signal completion
};

// Multiple consumers
for _ in range(0, 3) {
    spawn {
        for value in ch {  // Iterates until channel closed
            process_value(value);
        }
    };
}

Select Statement

// Select from multiple channels
loop {
    select {
        case msg = data_ch.receive() => {
            process_data(msg);
        },
        case cmd = control_ch.receive() => {
            if (cmd == "stop") { break; }
        },
        case timeout(1000) => {
            $(\"No activity for 1 second\").print();
        }
    }
}

Async/Await

Async/await provides composable asynchronous programming without callback hell.

Async Functions

// Define async function
private async function fetch_user(id: Uuid) -> Result {
    let response = http.get(f"/api/users/{id}").await();
    response.json().await()
}

// Call async function
async {
    let user = fetch_user(user_id).await();
    match user {
        Ok(u) => update_ui(u),
        Err(e) => show_error(e)
    }
};

Concurrent Async Operations

// Run multiple async operations concurrently
let (user, posts, comments) = join!(
    fetch_user(user_id),
    fetch_posts(user_id),
    fetch_comments(user_id)
).await();

// Process first completed
let result = race!(
    fetch_from_primary(),
    fetch_from_backup(),
    timeout(5000)
).await();

Async Streams

// Create async stream
private async function* generate_updates() {
    loop {
        let update = fetch_update().await();
        yield update;
        perform Time.sleep(1000);
    }
}

// Consume async stream
async {
    for await update in generate_updates() {
        if (update.is_critical()) {
            handle_critical_update(update);
            break;
        }
    }
}

Actor Model

Actors provide isolated state with message-passing concurrency.

Defining Actors

// Define an actor
private actor Counter {
    // Private state
    count: int = 0;
    
    // Message handlers
    private handle Increment(amount: int) {
        self.count += amount;
    }
    
    private handle Decrement(amount: int) {
        self.count -= amount;
    }
    
    private handle GetCount() -> int {
        self.count
    }
    
    private handle Reset() {
        self.count = 0;
    }
}

Using Actors

// Create actor instance
let counter = Counter.spawn();

// Send messages (async)
counter.send(Increment(5));
counter.send(Decrement(2));

// Request-response pattern
let current = counter.ask(GetCount()).await();
$(f"Current count: {current}").print();

// Actor supervision
let supervised = Counter.spawn_supervised({
    restart_policy: RestartPolicy.Exponential,
    max_restarts: 3
});

Actor Systems

// Complex actor system
private actor OrderProcessor {
    orders: Queue = Queue.new();
    workers: List> = [];
    
    private handle Init() {
        // Spawn worker pool
        for i in range(0, 10) {
            self.workers.push(Worker.spawn());
        }
    }
    
    private handle ProcessOrder(order: Order) {
        self.orders.enqueue(order);
        self.distribute_work();
    }
    
    private function distribute_work() {
        while (!self.orders.is_empty()) {
            let order = self.orders.dequeue();
            let worker = self.select_worker();
            worker.send(Process(order));
        }
    }
}

Spawn & Tasks

Spawn creates lightweight tasks that run concurrently.

Basic Spawning

// Spawn a task
spawn {
    perform_long_computation();
};

// Spawn with result
let handle = spawn {
    calculate_result()
};

// Wait for result
let result = handle.join().await();

// Spawn detached (fire and forget)
spawn_detached {
    background_cleanup();
};

Task Coordination

// Barrier synchronization
let barrier = Barrier.new(3);

for i in range(0, 3) {
    spawn {
        prepare_data(i);
        barrier.wait();  // Wait for all tasks
        process_synchronized();
    };
}

// WaitGroup pattern
let wg = WaitGroup.new();

for task in tasks {
    wg.add(1);
    spawn {
        process_task(task);
        wg.done();
    };
}

wg.wait();  // Wait for all tasks to complete

Contracts

Contracts provide formal verification and runtime assertions.

Function Contracts

// Define contracts
#[requires(n >= 0)]
#[ensures(result >= 1)]
private function factorial(n: int) -> int {
    if (n <= 1) { 1 } else { n * factorial(n - 1) }
}

// Complex contracts
#[requires(list.len() > 0)]
#[ensures(result >= list[0] && result <= list[list.len() - 1])]
private function binary_search(list: List, target: T) -> Option {
    // Implementation
}

// Invariants
#[invariant(balance >= 0)]
private struct Account {
    balance: float,
    transactions: List
}

Symbolic Verification

// Verify contracts with Z3
#[verify]
private function safe_divide(a: int, b: int) -> Option {
    if (b == 0) { None } else { Some(a / b) }
}

// Property-based testing
#[property_test]
private function test_sort_properties(list: List) {
    let sorted = list.sort();
    
    // Length preserved
    assert_eq(sorted.len(), list.len());
    
    // Ordered
    for i in range(0, sorted.len() - 1) {
        assert(sorted[i] <= sorted[i + 1]);
    }
    
    // Same elements
    assert_eq(sorted.sort(), list.sort());
}

Optimization & Performance

FluentAI features a comprehensive optimization infrastructure with five phases of advanced techniques for maximum performance.

Optimization Levels

FluentAI provides four optimization levels that progressively enable more aggressive transformations:

Phase 1: Runtime Profiling

FluentAI includes a comprehensive profiling infrastructure that collects runtime data to guide optimizations:

// Enable profiling in your VM
let mut vm = VM::new();
vm.enable_profiling(true);

// Run your application
vm.run(program)?;

// Extract profiling data
let profile_data = vm.get_profiler().get_profile_data();

// Profile data includes:
// - Function call counts and execution times
// - Value distributions for specialization
// - Loop iteration counts
// - Memory allocation patterns

Phase 2: Runtime-Guided Optimization

Using profiling data, FluentAI applies targeted optimizations to hot code paths:

Hot Path Inlining

// Functions called frequently are automatically inlined
private function compute(x: int) -> int {
    x * 2 + 1  // If called >1000 times, will be inlined
}

// The optimizer detects hot functions and inlines them
let result = data
    .map(x => compute(x))  // compute() inlined here
    .filter(x => x > 10);

Value Specialization

// If profiling shows a function is often called with specific values
private function process(mode: string, data: List) -> int {
    match mode {
        "fast" => fast_path(data),    // 80% of calls
        "normal" => normal_path(data), // 15% of calls
        _ => slow_path(data)          // 5% of calls
    }
}

// Optimizer creates specialized versions:
// - process_fast() for the common case
// - process_generic() for other cases

Adaptive Loop Unrolling

// Loops with predictable iteration counts are unrolled
for i in range(0, 4) {  // Profile shows always 4 iterations
    process(data[i]);
}

// Optimized to:
process(data[0]);
process(data[1]);
process(data[2]);
process(data[3]);

Phase 3: Adaptive Memoization

Pure functions with expensive computations are automatically memoized:

// The optimizer detects pure functions
private function fibonacci(n: int) -> int {
    if (n <= 1) { n }
    else { fibonacci(n-1) + fibonacci(n-2) }
}

// Automatically transformed to:
private function fibonacci_memoized(n: int) -> int {
    static memo_cache = Map::new();
    
    if let Some(result) = memo_cache.get(n) {
        return result;
    }
    
    let result = if (n <= 1) { n }
                 else { fibonacci_memoized(n-1) + fibonacci_memoized(n-2) };
    
    memo_cache.insert(n, result);
    result
}

Phase 4: AI-Driven Optimizations

FluentAI uses embedded AI analysis to detect patterns and apply sophisticated optimizations:

Effect Reordering

// Original code with interleaved effects
perform IO.print("Starting");
let x = compute_value();
perform IO.print("Computing");
let y = another_computation();
perform IO.print("Done");

// Optimized: effects batched, pure computations hoisted
let x = compute_value();
let y = another_computation();
perform IO.print("Starting");
perform IO.print("Computing");
perform IO.print("Done");

Subgraph Fusion

// Multiple traversals detected
let result = data
    .map(x => x * 2)
    .map(x => x + 1)
    .filter(x => x > 10);

// Fused into single traversal
let result = data
    .filter_map(x => {
        let temp = x * 2 + 1;
        if (temp > 10) { Some(temp) } else { None }
    });

Phase 5: Memory-Aware Transformations

Advanced memory optimizations for cache efficiency:

Escape Analysis & Stack Allocation

// The optimizer analyzes if values escape their scope
private function process_local() {
    let temp = [1, 2, 3, 4];  // Doesn't escape
    let sum = temp.sum();
    return sum;
}

// temp is stack-allocated instead of heap-allocated

Code Layout Optimization

// Functions are reordered based on call patterns
// Hot functions grouped together for better I-cache usage

// Before: Random layout
// function_a() -> 0x1000  (hot)
// function_b() -> 0x2000  (cold) 
// function_c() -> 0x3000  (hot)

// After: Temperature-based layout
// function_a() -> 0x1000  (hot)
// function_c() -> 0x1100  (hot)
// function_b() -> 0x4000  (cold)

Compiler Optimization Hints

// Manual optimization hints
#[inline(always)]
private function hot_path_function(x: int) -> int {
    x * 2 + 1
}

// No allocation hints
#[no_alloc]
private function process_in_place(data: &mut List) {
    for i in range(0, data.len()) {
        data[i] = data[i] * 2;
    }
}

// SIMD hints
#[simd]
private function vector_add(a: List, b: List) -> List {
    a.zip(b).map(|(x, y)| x + y)
}

// Pure function hints for memoization
#[pure]
private function expensive_computation(x: int) -> int {
    // Complex pure computation
}

Optimization Pipeline Configuration

// Configure optimization pipeline
use fluentai_optimizer::{
    OptimizationConfig, 
    OptimizationLevel,
    RuntimeGuidedConfig
};

// Basic configuration
let config = OptimizationConfig::for_level(
    OptimizationLevel::Aggressive
);

// Custom configuration with profiling data
let runtime_config = RuntimeGuidedConfig {
    hot_functions: profile_data.hot_functions,
    skewed_values: profile_data.skewed_values,
    hot_loops: profile_data.hot_loops,
    hot_function_threshold: 1000,
    value_specialization_threshold: 0.8,
    loop_unroll_threshold: 4.0,
};

// Create optimization pipeline
let pipeline = create_optimization_pipeline(runtime_config);
let optimized_ast = pipeline.optimize(ast)?;

AI-Driven AST Analysis

FluentAI features native AI-powered analysis of your code's Abstract Syntax Tree (AST) to detect patterns and suggest optimizations.

New! The AI analysis is embedded directly into the compiler with zero external dependencies. Enable with the ai-analysis feature flag.

Pattern Detection

// The compiler automatically detects common patterns
let data = [1, 2, 3, 4, 5]
    .map(x => x * 2)      // Detected: map-reduce pattern
    .filter(x => x > 5)   // Detected: filter-map chain
    .reduce(0, (a, b) => a + b);

// AI suggests optimizations like:
// - Fusion of map and filter operations
// - SIMD vectorization opportunities
// - Parallelization potential

Optimization Suggestions

// Enable AI analysis in your build
use fluentai_ai::{analyze_ast, AiAnalyzerBuilder};

// Get optimization suggestions
let analyzer = AiAnalyzerBuilder::new()
    .detect_patterns(true)
    .detect_optimizations(true)
    .build();

let analysis = analyzer.analyze_graph(&ast)?;

// Analysis provides:
// - Performance score (0.0 - 1.0)
// - Detected patterns (map-reduce, recursion, etc.)
// - Optimization opportunities:
//   * Constant folding
//   * Common subexpression elimination
//   * Tail recursion optimization
//   * Dead code elimination

Zero-Copy Feature Extraction

// Features are extracted directly from AST nodes
// No JSON serialization or external dependencies

// Each node provides ML-ready features:
let features = node.metadata.feature_vector();
// Returns normalized features for:
// - Node type and structure
// - Purity analysis
// - Usage statistics
// - Performance hints
// - Context memory

// The AI model operates directly on in-memory AST
// with O(n) complexity and efficient caching

Integration with Compiler Pipeline

// AI analysis results are injected into AST metadata
let injector = MetadataInjector::new(InjectorConfig {
    inject_optimizations: true,
    inject_patterns: true,
    inject_embeddings: false, // Optional: node embeddings
});

injector.inject(&mut ast, &analysis)?;

// Metadata is available during compilation phases:
// - Optimization passes can use AI suggestions
// - Code generation can leverage pattern information
// - IDE integration for real-time insights

Runtime Learning Mode

FluentAI's Runtime Learning Mode is a sophisticated system that automatically optimizes your code during execution by learning from runtime behavior.

How Runtime Learning Works

The learning mode system operates in several phases:

  1. Profiling: Tracks function execution counts and performance metrics
  2. Hot Function Detection: Identifies frequently executed functions (default: 100+ calls)
  3. Strategy Exploration: Tests different optimization strategies on hot functions
  4. Variant Compilation: Creates optimized bytecode variants for each strategy
  5. Performance Measurement: Measures execution time, instruction count, and memory usage
  6. Automatic Selection: Chooses the best performing variant for future executions

Optimization Strategies

The learning mode can explore various optimization strategies:

// Available optimization strategies
enum OptimizationStrategy {
    None,           // No optimization (baseline)
    Basic,          // Constant folding, dead code elimination
    Standard,       // + CSE, function inlining
    Aggressive,     // All optimizations enabled
    Custom(u32),    // Bitmask for specific optimizations
}

Available Optimization Passes

When using Custom strategies, these optimization passes can be individually enabled:

Exploration Modes

Control how the learning mode explores optimization combinations:

// Configuration for learning mode
let config = LearningModeConfig {
    hot_threshold: 100,              // Executions before "hot"
    exploration_mode: ExplorationMode::Smart,
    exploration_rate: 0.2,           // 20% exploration
    use_rl_agent: true,             // Use AI for decisions
};

// Exploration modes:
enum ExplorationMode {
    Quick,      // Tests 4 predefined strategies only
    Smart,      // Tests 19 carefully selected combinations
    Exhaustive, // Tests all 8192 possible combinations
}

Enabling Runtime Learning

To enable runtime learning in your application:

// Create VM with learning mode enabled
let mut vm = VM::new();
vm.enable_learning_mode(LearningModeConfig::default());

// Run your application
vm.run(program)?;

// Check optimization progress
let stats = vm.get_learning_stats();
$(f"Functions analyzed: {stats.functions_analyzed}").print();
$(f"Hot functions found: {stats.hot_functions}").print();
$(f"Optimized functions: {stats.functions_explored}").print();

// View exploration progress for active optimizations
for (func_id, tested, total) in stats.exploration_progress {
    $(f"Function {func_id}: {tested}/{total} strategies tested").print();
}

Performance Metrics

The learning mode tracks comprehensive metrics for each execution:

struct ExecutionMetrics {
    duration: Duration,           // Execution time
    instruction_count: u64,       // Instructions executed
    allocations: u64,            // Memory allocations
    cache_misses: u64,           // Simulated cache misses
    branch_mispredictions: u64,  // Simulated branch misses
}

Variant Execution

Once the learning mode identifies the best optimization strategy, the VM seamlessly switches to optimized variants:

// The VM maintains multiple compiled variants
// and automatically selects the best one

// Original function
private function process_data(items: List) -> int {
    items
        .filter(x => x > 0)
        .map(x => x * x)
        .sum()
}

// After learning, the VM might use a variant with:
// - Filter and map operations fused
// - SIMD instructions for squaring
// - Parallel reduction for sum
// All transparently without code changes!

Real-World Example

Here's a practical example showing runtime optimization in action:

// Fibonacci function that benefits from memoization
private function fib(n: int) -> int {
    if (n <= 1) { n }
    else { fib(n-1) + fib(n-2) }
}

// First execution: No optimization
let start = perform Time.now();
let result1 = fib(40);  // ~5 seconds
$(f"Unoptimized: {perform Time.now() - start}ms").print();

// After 100+ calls, learning mode kicks in
// It detects the function is pure and adds memoization

// Subsequent execution: Optimized with memoization
let start2 = perform Time.now();
let result2 = fib(40);  // ~0.001 seconds
$(f"Optimized: {perform Time.now() - start2}ms").print();

// 5000x speedup achieved automatically!

Configuration Options

// Advanced configuration
let config = LearningModeConfig {
    // Function becomes hot after this many calls
    hot_threshold: 100,
    
    // Maximum strategies to try per function
    max_strategies_per_function: 10,
    
    // Save learned optimizations to disk
    save_learned_data: true,
    model_path: Some("optimizations.bin"),
    
    // Exploration vs exploitation rate
    exploration_rate: 0.2,
    
    // Use AI agent for intelligent strategy selection
    use_rl_agent: true,
    
    // How to explore optimization space
    exploration_mode: ExplorationMode::Smart,
};

Best Practices

Debugging Runtime Optimizations

// Enable detailed optimization logging
vm.set_optimization_log_level(LogLevel::Debug);

// Disable specific optimizations for debugging
let config = LearningModeConfig {
    disabled_optimizations: vec![
        OptimizationPass::Memoization,
        OptimizationPass::FunctionInlining,
    ],
    ..Default::default()
};

// Force a specific strategy for testing
vm.force_optimization_strategy(
    function_id, 
    OptimizationStrategy::Basic
);

Memory Management

// Arena allocation
let arena = Arena.new();
let data = arena.alloc_slice(1000);

// Object pooling
let pool = ObjectPool.new(
    create: || Connection.new(),
    reset: |conn| conn.clear()
);

let conn = pool.get();
// Use connection
pool.return(conn);

// Custom allocators
#[allocator(bump)]
private function build_tree() -> Tree {
    // All allocations use bump allocator
}

Foreign Function Interface

FFI allows calling code from other languages.

C Interop

// Import C functions
extern "C" {
    private function strlen(s: *const u8) -> usize;
    private function malloc(size: usize) -> *mut u8;
    private function free(ptr: *mut u8);
}

// Export to C
#[export_c]
public function fluentai_process(data: *const u8, len: usize) -> i32 {
    let slice = unsafe { slice_from_raw(data, len) };
    process_data(slice) as i32
}

WebAssembly

// WASM exports
#[wasm_export]
public function add(a: i32, b: i32) -> i32 {
    a + b
}

// WASM imports
#[wasm_import("env", "log")]
extern function console_log(msg: *const u8, len: usize);

// WASM memory management
#[wasm_export]
public function allocate(size: usize) -> *mut u8 {
    Box.into_raw(vec![0u8; size])
}
Next: Learn about Continuum, FluentAI's revolutionary rendering and reactive UI system.