Advanced Topics
This guide covers FluentAI's advanced features for building high-performance, concurrent applications.
Concurrency Overview
FluentAI provides multiple concurrency primitives inspired by Go and Erlang, designed for safety and performance.
Concurrency Models
- Channels - Go-style CSP (Communicating Sequential Processes)
- Async/Await - Asynchronous programming with futures
- Actors - Erlang-style isolated state with message passing
- Spawn - Lightweight green threads
Channels
Channels provide thread-safe communication between concurrent tasks.
Creating and Using Channels
// Create a channel with buffer size
let ch = channel(10);
// Unbuffered channel (synchronous)
let sync_ch = channel(0);
// Send values
ch.send(42);
ch.send(100);
// Receive values
let value = ch.receive(); // Blocks until value available
let maybe_value = ch.try_receive(); // Non-blocking, returns Option
Producer-Consumer Pattern
// Producer
spawn {
for i in range(0, 100) {
ch.send(i * i);
perform Time.sleep(10);
}
ch.close(); // Signal completion
};
// Multiple consumers
for _ in range(0, 3) {
spawn {
for value in ch { // Iterates until channel closed
process_value(value);
}
};
}
Select Statement
// Select from multiple channels
loop {
select {
case msg = data_ch.receive() => {
process_data(msg);
},
case cmd = control_ch.receive() => {
if (cmd == "stop") { break; }
},
case timeout(1000) => {
$(\"No activity for 1 second\").print();
}
}
}
Async/Await
Async/await provides composable asynchronous programming without callback hell.
Async Functions
// Define async function
private async function fetch_user(id: Uuid) -> Result {
let response = http.get(f"/api/users/{id}").await();
response.json().await()
}
// Call async function
async {
let user = fetch_user(user_id).await();
match user {
Ok(u) => update_ui(u),
Err(e) => show_error(e)
}
};
Concurrent Async Operations
// Run multiple async operations concurrently
let (user, posts, comments) = join!(
fetch_user(user_id),
fetch_posts(user_id),
fetch_comments(user_id)
).await();
// Process first completed
let result = race!(
fetch_from_primary(),
fetch_from_backup(),
timeout(5000)
).await();
Async Streams
// Create async stream
private async function* generate_updates() {
loop {
let update = fetch_update().await();
yield update;
perform Time.sleep(1000);
}
}
// Consume async stream
async {
for await update in generate_updates() {
if (update.is_critical()) {
handle_critical_update(update);
break;
}
}
}
Actor Model
Actors provide isolated state with message-passing concurrency.
Defining Actors
// Define an actor
private actor Counter {
// Private state
count: int = 0;
// Message handlers
private handle Increment(amount: int) {
self.count += amount;
}
private handle Decrement(amount: int) {
self.count -= amount;
}
private handle GetCount() -> int {
self.count
}
private handle Reset() {
self.count = 0;
}
}
Using Actors
// Create actor instance
let counter = Counter.spawn();
// Send messages (async)
counter.send(Increment(5));
counter.send(Decrement(2));
// Request-response pattern
let current = counter.ask(GetCount()).await();
$(f"Current count: {current}").print();
// Actor supervision
let supervised = Counter.spawn_supervised({
restart_policy: RestartPolicy.Exponential,
max_restarts: 3
});
Actor Systems
// Complex actor system
private actor OrderProcessor {
orders: Queue = Queue.new();
workers: List> = [];
private handle Init() {
// Spawn worker pool
for i in range(0, 10) {
self.workers.push(Worker.spawn());
}
}
private handle ProcessOrder(order: Order) {
self.orders.enqueue(order);
self.distribute_work();
}
private function distribute_work() {
while (!self.orders.is_empty()) {
let order = self.orders.dequeue();
let worker = self.select_worker();
worker.send(Process(order));
}
}
}
Spawn & Tasks
Spawn creates lightweight tasks that run concurrently.
Basic Spawning
// Spawn a task
spawn {
perform_long_computation();
};
// Spawn with result
let handle = spawn {
calculate_result()
};
// Wait for result
let result = handle.join().await();
// Spawn detached (fire and forget)
spawn_detached {
background_cleanup();
};
Task Coordination
// Barrier synchronization
let barrier = Barrier.new(3);
for i in range(0, 3) {
spawn {
prepare_data(i);
barrier.wait(); // Wait for all tasks
process_synchronized();
};
}
// WaitGroup pattern
let wg = WaitGroup.new();
for task in tasks {
wg.add(1);
spawn {
process_task(task);
wg.done();
};
}
wg.wait(); // Wait for all tasks to complete
Contracts
Contracts provide formal verification and runtime assertions.
Function Contracts
// Define contracts
#[requires(n >= 0)]
#[ensures(result >= 1)]
private function factorial(n: int) -> int {
if (n <= 1) { 1 } else { n * factorial(n - 1) }
}
// Complex contracts
#[requires(list.len() > 0)]
#[ensures(result >= list[0] && result <= list[list.len() - 1])]
private function binary_search(list: List, target: T) -> Option {
// Implementation
}
// Invariants
#[invariant(balance >= 0)]
private struct Account {
balance: float,
transactions: List
}
Symbolic Verification
// Verify contracts with Z3
#[verify]
private function safe_divide(a: int, b: int) -> Option {
if (b == 0) { None } else { Some(a / b) }
}
// Property-based testing
#[property_test]
private function test_sort_properties(list: List) {
let sorted = list.sort();
// Length preserved
assert_eq(sorted.len(), list.len());
// Ordered
for i in range(0, sorted.len() - 1) {
assert(sorted[i] <= sorted[i + 1]);
}
// Same elements
assert_eq(sorted.sort(), list.sort());
}
Optimization & Performance
FluentAI features a comprehensive optimization infrastructure with five phases of advanced techniques for maximum performance.
Optimization Levels
FluentAI provides four optimization levels that progressively enable more aggressive transformations:
-O0(None) - No optimizations, fastest compilation-O1(Basic) - Basic optimizations: constant folding, dead code elimination-O2(Standard) - Standard optimizations: inlining, CSE, loop optimizations-O3(Aggressive) - Maximum optimizations: all passes enabled
Phase 1: Runtime Profiling
FluentAI includes a comprehensive profiling infrastructure that collects runtime data to guide optimizations:
// Enable profiling in your VM
let mut vm = VM::new();
vm.enable_profiling(true);
// Run your application
vm.run(program)?;
// Extract profiling data
let profile_data = vm.get_profiler().get_profile_data();
// Profile data includes:
// - Function call counts and execution times
// - Value distributions for specialization
// - Loop iteration counts
// - Memory allocation patterns
Phase 2: Runtime-Guided Optimization
Using profiling data, FluentAI applies targeted optimizations to hot code paths:
Hot Path Inlining
// Functions called frequently are automatically inlined
private function compute(x: int) -> int {
x * 2 + 1 // If called >1000 times, will be inlined
}
// The optimizer detects hot functions and inlines them
let result = data
.map(x => compute(x)) // compute() inlined here
.filter(x => x > 10);
Value Specialization
// If profiling shows a function is often called with specific values
private function process(mode: string, data: List) -> int {
match mode {
"fast" => fast_path(data), // 80% of calls
"normal" => normal_path(data), // 15% of calls
_ => slow_path(data) // 5% of calls
}
}
// Optimizer creates specialized versions:
// - process_fast() for the common case
// - process_generic() for other cases
Adaptive Loop Unrolling
// Loops with predictable iteration counts are unrolled
for i in range(0, 4) { // Profile shows always 4 iterations
process(data[i]);
}
// Optimized to:
process(data[0]);
process(data[1]);
process(data[2]);
process(data[3]);
Phase 3: Adaptive Memoization
Pure functions with expensive computations are automatically memoized:
// The optimizer detects pure functions
private function fibonacci(n: int) -> int {
if (n <= 1) { n }
else { fibonacci(n-1) + fibonacci(n-2) }
}
// Automatically transformed to:
private function fibonacci_memoized(n: int) -> int {
static memo_cache = Map::new();
if let Some(result) = memo_cache.get(n) {
return result;
}
let result = if (n <= 1) { n }
else { fibonacci_memoized(n-1) + fibonacci_memoized(n-2) };
memo_cache.insert(n, result);
result
}
Phase 4: AI-Driven Optimizations
FluentAI uses embedded AI analysis to detect patterns and apply sophisticated optimizations:
Effect Reordering
// Original code with interleaved effects
perform IO.print("Starting");
let x = compute_value();
perform IO.print("Computing");
let y = another_computation();
perform IO.print("Done");
// Optimized: effects batched, pure computations hoisted
let x = compute_value();
let y = another_computation();
perform IO.print("Starting");
perform IO.print("Computing");
perform IO.print("Done");
Subgraph Fusion
// Multiple traversals detected
let result = data
.map(x => x * 2)
.map(x => x + 1)
.filter(x => x > 10);
// Fused into single traversal
let result = data
.filter_map(x => {
let temp = x * 2 + 1;
if (temp > 10) { Some(temp) } else { None }
});
Phase 5: Memory-Aware Transformations
Advanced memory optimizations for cache efficiency:
Escape Analysis & Stack Allocation
// The optimizer analyzes if values escape their scope
private function process_local() {
let temp = [1, 2, 3, 4]; // Doesn't escape
let sum = temp.sum();
return sum;
}
// temp is stack-allocated instead of heap-allocated
Code Layout Optimization
// Functions are reordered based on call patterns
// Hot functions grouped together for better I-cache usage
// Before: Random layout
// function_a() -> 0x1000 (hot)
// function_b() -> 0x2000 (cold)
// function_c() -> 0x3000 (hot)
// After: Temperature-based layout
// function_a() -> 0x1000 (hot)
// function_c() -> 0x1100 (hot)
// function_b() -> 0x4000 (cold)
Compiler Optimization Hints
// Manual optimization hints
#[inline(always)]
private function hot_path_function(x: int) -> int {
x * 2 + 1
}
// No allocation hints
#[no_alloc]
private function process_in_place(data: &mut List) {
for i in range(0, data.len()) {
data[i] = data[i] * 2;
}
}
// SIMD hints
#[simd]
private function vector_add(a: List, b: List) -> List {
a.zip(b).map(|(x, y)| x + y)
}
// Pure function hints for memoization
#[pure]
private function expensive_computation(x: int) -> int {
// Complex pure computation
}
Optimization Pipeline Configuration
// Configure optimization pipeline
use fluentai_optimizer::{
OptimizationConfig,
OptimizationLevel,
RuntimeGuidedConfig
};
// Basic configuration
let config = OptimizationConfig::for_level(
OptimizationLevel::Aggressive
);
// Custom configuration with profiling data
let runtime_config = RuntimeGuidedConfig {
hot_functions: profile_data.hot_functions,
skewed_values: profile_data.skewed_values,
hot_loops: profile_data.hot_loops,
hot_function_threshold: 1000,
value_specialization_threshold: 0.8,
loop_unroll_threshold: 4.0,
};
// Create optimization pipeline
let pipeline = create_optimization_pipeline(runtime_config);
let optimized_ast = pipeline.optimize(ast)?;
AI-Driven AST Analysis
FluentAI features native AI-powered analysis of your code's Abstract Syntax Tree (AST) to detect patterns and suggest optimizations.
ai-analysis feature flag.
Pattern Detection
// The compiler automatically detects common patterns
let data = [1, 2, 3, 4, 5]
.map(x => x * 2) // Detected: map-reduce pattern
.filter(x => x > 5) // Detected: filter-map chain
.reduce(0, (a, b) => a + b);
// AI suggests optimizations like:
// - Fusion of map and filter operations
// - SIMD vectorization opportunities
// - Parallelization potential
Optimization Suggestions
// Enable AI analysis in your build
use fluentai_ai::{analyze_ast, AiAnalyzerBuilder};
// Get optimization suggestions
let analyzer = AiAnalyzerBuilder::new()
.detect_patterns(true)
.detect_optimizations(true)
.build();
let analysis = analyzer.analyze_graph(&ast)?;
// Analysis provides:
// - Performance score (0.0 - 1.0)
// - Detected patterns (map-reduce, recursion, etc.)
// - Optimization opportunities:
// * Constant folding
// * Common subexpression elimination
// * Tail recursion optimization
// * Dead code elimination
Zero-Copy Feature Extraction
// Features are extracted directly from AST nodes
// No JSON serialization or external dependencies
// Each node provides ML-ready features:
let features = node.metadata.feature_vector();
// Returns normalized features for:
// - Node type and structure
// - Purity analysis
// - Usage statistics
// - Performance hints
// - Context memory
// The AI model operates directly on in-memory AST
// with O(n) complexity and efficient caching
Integration with Compiler Pipeline
// AI analysis results are injected into AST metadata
let injector = MetadataInjector::new(InjectorConfig {
inject_optimizations: true,
inject_patterns: true,
inject_embeddings: false, // Optional: node embeddings
});
injector.inject(&mut ast, &analysis)?;
// Metadata is available during compilation phases:
// - Optimization passes can use AI suggestions
// - Code generation can leverage pattern information
// - IDE integration for real-time insights
Runtime Learning Mode
FluentAI's Runtime Learning Mode is a sophisticated system that automatically optimizes your code during execution by learning from runtime behavior.
How Runtime Learning Works
The learning mode system operates in several phases:
- Profiling: Tracks function execution counts and performance metrics
- Hot Function Detection: Identifies frequently executed functions (default: 100+ calls)
- Strategy Exploration: Tests different optimization strategies on hot functions
- Variant Compilation: Creates optimized bytecode variants for each strategy
- Performance Measurement: Measures execution time, instruction count, and memory usage
- Automatic Selection: Chooses the best performing variant for future executions
Optimization Strategies
The learning mode can explore various optimization strategies:
// Available optimization strategies
enum OptimizationStrategy {
None, // No optimization (baseline)
Basic, // Constant folding, dead code elimination
Standard, // + CSE, function inlining
Aggressive, // All optimizations enabled
Custom(u32), // Bitmask for specific optimizations
}
Available Optimization Passes
When using Custom strategies, these optimization passes can be individually enabled:
- Bit 0: Constant Folding - Evaluates constant expressions at compile time
- Bit 1: Dead Code Elimination - Removes unreachable code
- Bit 2: Common Subexpression Elimination - Reuses computed values
- Bit 3: Function Inlining - Replaces calls with function bodies
- Bit 5: Loop Optimization - General loop transformations
- Bit 7: Effect Reordering - Optimizes effect operations
- Bit 8: Strength Reduction - Replaces expensive ops with cheaper ones
- Bit 10: Loop Invariant Code Motion - Moves computations out of loops
- Bit 11: Function Specialization - Creates specialized versions
- Bit 12: Memoization - Caches pure function results
Exploration Modes
Control how the learning mode explores optimization combinations:
// Configuration for learning mode
let config = LearningModeConfig {
hot_threshold: 100, // Executions before "hot"
exploration_mode: ExplorationMode::Smart,
exploration_rate: 0.2, // 20% exploration
use_rl_agent: true, // Use AI for decisions
};
// Exploration modes:
enum ExplorationMode {
Quick, // Tests 4 predefined strategies only
Smart, // Tests 19 carefully selected combinations
Exhaustive, // Tests all 8192 possible combinations
}
Enabling Runtime Learning
To enable runtime learning in your application:
// Create VM with learning mode enabled
let mut vm = VM::new();
vm.enable_learning_mode(LearningModeConfig::default());
// Run your application
vm.run(program)?;
// Check optimization progress
let stats = vm.get_learning_stats();
$(f"Functions analyzed: {stats.functions_analyzed}").print();
$(f"Hot functions found: {stats.hot_functions}").print();
$(f"Optimized functions: {stats.functions_explored}").print();
// View exploration progress for active optimizations
for (func_id, tested, total) in stats.exploration_progress {
$(f"Function {func_id}: {tested}/{total} strategies tested").print();
}
Performance Metrics
The learning mode tracks comprehensive metrics for each execution:
struct ExecutionMetrics {
duration: Duration, // Execution time
instruction_count: u64, // Instructions executed
allocations: u64, // Memory allocations
cache_misses: u64, // Simulated cache misses
branch_mispredictions: u64, // Simulated branch misses
}
Variant Execution
Once the learning mode identifies the best optimization strategy, the VM seamlessly switches to optimized variants:
// The VM maintains multiple compiled variants
// and automatically selects the best one
// Original function
private function process_data(items: List) -> int {
items
.filter(x => x > 0)
.map(x => x * x)
.sum()
}
// After learning, the VM might use a variant with:
// - Filter and map operations fused
// - SIMD instructions for squaring
// - Parallel reduction for sum
// All transparently without code changes!
Real-World Example
Here's a practical example showing runtime optimization in action:
// Fibonacci function that benefits from memoization
private function fib(n: int) -> int {
if (n <= 1) { n }
else { fib(n-1) + fib(n-2) }
}
// First execution: No optimization
let start = perform Time.now();
let result1 = fib(40); // ~5 seconds
$(f"Unoptimized: {perform Time.now() - start}ms").print();
// After 100+ calls, learning mode kicks in
// It detects the function is pure and adds memoization
// Subsequent execution: Optimized with memoization
let start2 = perform Time.now();
let result2 = fib(40); // ~0.001 seconds
$(f"Optimized: {perform Time.now() - start2}ms").print();
// 5000x speedup achieved automatically!
Configuration Options
// Advanced configuration
let config = LearningModeConfig {
// Function becomes hot after this many calls
hot_threshold: 100,
// Maximum strategies to try per function
max_strategies_per_function: 10,
// Save learned optimizations to disk
save_learned_data: true,
model_path: Some("optimizations.bin"),
// Exploration vs exploitation rate
exploration_rate: 0.2,
// Use AI agent for intelligent strategy selection
use_rl_agent: true,
// How to explore optimization space
exploration_mode: ExplorationMode::Smart,
};
Best Practices
- Profile First: Run your application with typical workloads to gather representative data
- Start with Smart Mode: Use Smart exploration for balanced optimization discovery
- Save Learned Data: Persist optimizations to avoid re-learning on restart
- Monitor Progress: Check learning statistics to understand optimization impact
- Test Thoroughly: Ensure optimized variants produce correct results
Debugging Runtime Optimizations
// Enable detailed optimization logging
vm.set_optimization_log_level(LogLevel::Debug);
// Disable specific optimizations for debugging
let config = LearningModeConfig {
disabled_optimizations: vec![
OptimizationPass::Memoization,
OptimizationPass::FunctionInlining,
],
..Default::default()
};
// Force a specific strategy for testing
vm.force_optimization_strategy(
function_id,
OptimizationStrategy::Basic
);
Memory Management
// Arena allocation
let arena = Arena.new();
let data = arena.alloc_slice(1000);
// Object pooling
let pool = ObjectPool.new(
create: || Connection.new(),
reset: |conn| conn.clear()
);
let conn = pool.get();
// Use connection
pool.return(conn);
// Custom allocators
#[allocator(bump)]
private function build_tree() -> Tree {
// All allocations use bump allocator
}
Foreign Function Interface
FFI allows calling code from other languages.
C Interop
// Import C functions
extern "C" {
private function strlen(s: *const u8) -> usize;
private function malloc(size: usize) -> *mut u8;
private function free(ptr: *mut u8);
}
// Export to C
#[export_c]
public function fluentai_process(data: *const u8, len: usize) -> i32 {
let slice = unsafe { slice_from_raw(data, len) };
process_data(slice) as i32
}
WebAssembly
// WASM exports
#[wasm_export]
public function add(a: i32, b: i32) -> i32 {
a + b
}
// WASM imports
#[wasm_import("env", "log")]
extern function console_log(msg: *const u8, len: usize);
// WASM memory management
#[wasm_export]
public function allocate(size: usize) -> *mut u8 {
Box.into_raw(vec![0u8; size])
}